Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 34(10): 47, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735291

RESUMO

Numerous infections are linked to Pseudomonas aeruginosa. It is one of the major medical concerns because of virulence and antibiotic resistance. Antibiotic encapsulation in liposomes is a good strategy for controlling infections caused by this microorganism. Evaluation of anti-Pseudomonas aeruginosa effect of liposomal form of Imipenem/Cilastatin in vitro condition. By using the disk agar diffusion technique, the isolates' pattern of antibiotic resistance was identified. The antibiotic was placed into the nanoliposome after it had been made using the thin layer and ethanol injection techniques. SEM and DLS were used to determine the size, shape, and zeta potential of the encapsulated drug form and the empty nanoliposome. Additionally, Imipenem/Cilastatin encapsulation in nanoliposomes was studied using FT-IR spectroscopy. In the microbial assay experiments the MIC, MBC and MBEC of liposomal and free drug forms were determined. The nanoparticles were spherical, with a diameter ranging from 30 to 39 nm, and the EE% in the thin layer and ethanol injection procedures were 97 and 98, respectively. Imipenem/Cilastatin nanoliposomes showed peaks at 3009 cm-1 and 1650 cm-1, demonstrating the thermodynamic stability for the chemical structure of the drug enclosed and validating the encapsulation of antibiotic in the nanoliposomes. When compared to free drug forms, nanoliposomes had lower MIC and MBC values in the majority of the isolates and had a greater ability to eradicate the biofilm formation. It was shown that the two nanoliposome preparation techniques were more efficient in 80% of the isolates, which had outcomes that were consistent with those of numerous other investigations. Overall, we demonstrated that the antibacterial activity of nanoliposomes was higher than that of the free drug form based on the evaluation of their MIC and MBC. Pharmaceutical nanoliposome techniques provide an excellent future perspective on how to manage microbial infections that are resistant to antibiotics.


Assuntos
Antibacterianos , Pseudomonas aeruginosa , Espectroscopia de Infravermelho com Transformada de Fourier , Combinação Imipenem e Cilastatina , Antibacterianos/farmacologia , Etanol , Lipossomos , Biofilmes
2.
Comb Chem High Throughput Screen ; 26(15): 2607-2613, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37461363

RESUMO

Drug degradation is a process that can render pharmaceuticals inactive without causing any visible distortion. This can disrupt the therapeutic process, and on occasion, when the process produces toxic metabolites, it can have much more fatal consequences. Light is one of the most significant components that might cause deterioration, and several attempts have been made to improve and increase the practical photosensitizing of nano-scaled pharmaceuticals. Considering this, the insolubility and aggregating qualities of fullerenes have received significant attention. Fullerene is considered to have a unique carbon structure. In order to gain improved water solubility and biocompatible properties, fullerenes have been combined with water-soluble, biodegradable, and adjustable polymers. More specifically, these linkers exhibit increased tumor cell identification and greater tumor cell suppression when linked to therapeutic ligands (tumor-targeting) or stimuliresponsive polymers. According to scientific studies, fullerene-drug combinations can be used in certain complex diseases, like infectious and viral types. Several studies have combined fullerenes into nano-emulsions or liposomes for various pharmacological objectives. In the current work, fullerene/polymer nanomaterials are discussed for potential therapeutic techniques for the treatment of various diseases, particularly cancer and AIDS. According to the research studies, fullerene is a suitable element with outstanding physical and chemical properties that has a wide range of potential applications in the pharmaceutical industry, including drug delivery system design, photodynamic cancer therapy, and antioxidant therapy.

3.
Curr Drug Deliv ; 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37345248

RESUMO

When drugs enter the field of human life, they face problems in the area of delivery, delivery to the destination, and metabolism. These problems can cause reducing drug's therapeutic effect and even increase its side effects. Together, these cases can reduce the patient's compliance with the treatment and complicate the treatment process. Much work has been done to solve or at least reduce these problems. For example, using different forms of a single drug molecule (like Citalopram and Escitalopram); a bit changes in the drug's molecule like Meperidine and α-Prodine, and using carriers (like Tigerase®). PEGylation is a recently presented method that can use for many targets. Poly Ethylene Glycol or PEG is a polymer that can attach to drugs by using different methods and causing sustained release, controlled metabolism, targeted delivery, and other cases. All of them, although they will not necessarily lead to an increase in the effect of the drug, will lead to the improvement of the treatment process in certain ways. In this article, the team of authors has tried to collect and carefully review the best cases based on the PEGylation of drugs that can help the readers of this article.

4.
Curr Pharm Des ; 29(15): 1173-1179, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37272461

RESUMO

Cancer remains one of the leading causes of death worldwide and a major impediment to increasing life expectancy. However, survival rates with average standard cancer treatment strategies have not significantly improved in recent decades, with tumor metastasis, adverse drug reactions, and drug resistance still posing major challenges. Replacement therapies are essential for treating this terrible disease. Recently, there has been a dramatic increase in the use of phytochemical-derived conjugated chemotherapeutic agents due to their biocompatibility, low cytotoxicity, low resistance, and dynamic physiochemical properties that distinguish normal cells in treating various types of cancer. The use of plant-based carriers has many advantages, such as the availability of raw materials, lower cost, lower toxicity in most cases, and greater compatibility with the body's structure compared to chemical and mineral types of carriers. Unfortunately, several challenges complicate the efficient administration of herbal medicines, including physicochemical disadvantages such as poor solubility and instability, and pharmacokinetic challenges such as poor absorption and low bioavailability that can cause problems in clinical trials. Novel delivery systems such as liposomes, phytosomes, nanoparticles, and nanocapsules are more suitable as delivery systems for phytomedicinal components compared to conventional systems. The use of these delivery systems can improve bioavailability, pharmacological activity, prolonged delivery, and provide physical and chemical stability that increases half-life. This article discusses different types of phytocompounds used in cancer treatment.


Assuntos
Nanopartículas , Neoplasias , Plantas Medicinais , Humanos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Lipossomos/uso terapêutico , Nanopartículas/química
5.
Curr Microbiol ; 80(5): 173, 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37029840

RESUMO

The present study aimed to investigate the biocompatibility, antibacterial/anti-biofilm effects of ciprofloxacin-loaded calcium carbonate (Cip- loaded CaCO3) nanoparticles against the common organisms responsible for osteomyelitis. The antibacterial and biofilm inhibitory activities were studied by determination of minimum inhibitory concentrations (MICs) and minimum biofilm inhibitory concentrations (MBICs), respectively. Hemolytic effects were determined for studying hemocompatibility. The SDS-PAGE method was used to study the interaction of Cip- loaded CaCO3 with plasma proteins. The effects of Cip- loaded CaCO3 on the cell viability of human bone marrow mesenchymal stem cells (hBM-MSCs) was detected. The Cip- loaded CaCO3 nanoparticles were shown a significant antimicrobial effect at lower concentrations than free ciprofloxacin. No significant hemolytic effect was observed. The Cip- loaded CaCO3 nanoparticles have shown interaction with apolipoprotein A1 (28 kDa) and albumin (66.5 kDa). The viability of hBM-MSCs treated with Cip- loaded CaCO3 was more than 96%. Our results indicated that Cip-loaded CaCO3 nanoparticles had favorable in vitro compatibility with human red blood cells, antimicrobial effects, and low cytotoxicity.


Assuntos
Nanopartículas , Osteomielite , Humanos , Ciprofloxacina/farmacologia , Carbonato de Cálcio/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Osteomielite/tratamento farmacológico
6.
Adv Pharm Bull ; 13(1): 36-47, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36721803

RESUMO

Toll-like receptors (TLRs) are essential receptors of the innate immune system, playing a significant role in cardiovascular diseases. TLR4, with the highest expression among TLRs in the heart, has been investigated extensively for its critical role in different myocardial inflammatory conditions. Studies suggest that inhibition of TLR4 signaling pathways reduces inflammatory responses and even prevents additional injuries to the already damaged myocardium. Recent research results have led to a hypothesis that there may be a relation between TLR4 expression and 5' adenosine monophosphate-activated protein kinase (AMPK) signaling in various inflammatory conditions, including cardiovascular diseases. AMPK, as a cellular energy sensor, has been reported to show anti-inflammatory effects in various models of inflammatory diseases. AMPK, in addition to its physiological acts in the heart, plays an essential role in myocardial ischemia and hypoxia by activating various energy production pathways. Herein we will discuss the role of TLR4 and AMPK in cardiovascular diseases and a possible relation between TLRs and AMPK as a novel therapeutic target. In our opinion, AMPK-related TLR modulators will find application in treating different immune-mediated inflammatory disorders, especially inflammatory cardiac diseases, and present an option that will be widely used in clinical practice in the future.

7.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430951

RESUMO

Aptamers are synthetic single-stranded oligonucleotides (such as RNA and DNA) evolved in vitro using Systematic Evolution of Ligands through Exponential enrichment (SELEX) techniques. Aptamers are evolved to have high affinity and specificity to targets; hence, they have a great potential for use in therapeutics as delivery agents and/or in treatment strategies. Aptamers can be chemically synthesized and modified in a cost-effective manner and are easy to hybridize to a variety of nano-particles and other agents which has paved a way for targeted therapy and diagnostics applications such as in breast tumors. In this review, we systematically explain different aptamer adoption approaches to therapeutic or diagnostic uses when addressing breast tumors. We summarize the current therapeutic techniques to address breast tumors including aptamer-base approaches. We discuss the next aptamer-based therapeutic and diagnostic approaches targeting breast tumors. Finally, we provide a perspective on the future of aptamer-based sensors for breast therapeutics and diagnostics. In this section, the therapeutic applications of aptamers will be discussed for the targeting therapy of breast cancer.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias da Mama , Humanos , Feminino , Técnica de Seleção de Aptâmeros , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Aptâmeros de Nucleotídeos/uso terapêutico , Sistemas de Liberação de Medicamentos , Ligantes
8.
Iran J Pharm Res ; 20(3): 506-515, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34904004

RESUMO

Methotrexate (MTX) is one of the most effective therapeutics to treat different types of solid tumors; however, it suffers low permeability limiting its bioavailability and cellular uptake. To tackle this, we aim to design and fabricate different types of cell-penetrating peptides (CPPs) to improve the intracellular uptake of MTX without causing any immunogenic response. CPPs were synthesized by the solid-phase peptide synthesis method. Peptide-MTX conjugates were prepared via covalent binding of peptide and drug molecule. CPPs and peptide-E8 nanoparticles were characterized using zeta-sizer and scanning electron microscopy. Cytotoxicity of CPPs and peptide-MTX conjugates was evaluated by MTT assay. An enzyme-linked immunosorbent assay was employed to assess the IL-6 and TNF-α cytokine release profile. Amongst all sequences, W4R4-MTX possessed the highest loading efficiency (97%) and drug to peptide percentage (24.02%). The lowest loading efficiency (36%) and drug to peptide percentage (8.76%) were seen for NGRWK-MTX conjugates. The NGRWR peptide and NGRWR-E8 nanoparticles had acceptable size (~100 nm) with spherical and rod-like structures, respectively. The selected CPPs and peptide-MTX conjugates did not show any cytotoxicity or immunogenicity. The fabricated peptides are represented as promising carriers to improve the intracellular delivery of MTX to cancer cells with low immunogenic and cytotoxic effects on normal cells.

9.
Int J Nanomedicine ; 15: 3447-3470, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523343

RESUMO

Titanium dioxide (TiO2) nanostructures are one of the most plentiful compounds that have emerged in various fields of technology such as medicine, energy and biosensing. Various TiO2 nanostructures (nanotubes [NTs] and nanowires) have been employed in photoelectrochemical (PEC) biosensing applications, greatly enhancing the detection of targets. TiO2 nanostructures, used as reinforced material or coatings for the bare surface of titanium implants, are excellent additive materials to compensate titanium implants deficiencies-like poor surface interaction with surrounding tissues-by providing nanoporous surfaces and hierarchical structures. These nanostructures can also be loaded by diversified drugs-like osteoporosis drugs, anticancer and antibiotics-and used as local drug delivery systems. Furthermore, TiO2 nanostructures and their derivatives are new emerging antimicrobial agents to overcome human pathogenic microorganisms. However, like all other nanomaterials, toxicity and biocompatibility of TiO2 nanostructures must be considered. This review highlights recent advances, along with the properties and numerous applications of TiO2-based nanostructure compounds in nano biosensing, medical implants, drug delivery and antibacterial fields. Moreover, in the present study, some recent advances accomplished on the pharmaceutical applications of TiO2 nanostructures, as well as its toxicity and biocompatibility, are presented.


Assuntos
Tecnologia Biomédica/métodos , Nanoestruturas/química , Titânio/química , Anti-Infecciosos/farmacologia , Sistemas de Liberação de Medicamentos , Humanos , Próteses e Implantes , Titânio/toxicidade
10.
Drug Dev Ind Pharm ; 46(4): 521-530, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32116040

RESUMO

The low cellular uptake of Methotrexate (MTX), a commonly used anticancer drug, is a big challenge for efficient cancer therapy. Self-assembled peptide nanoparticles (SAPNs) are one of the major classes of peptide vectors that have gained much attention toward novel drug delivery systems. In the present study, different sequences of cell-penetrating peptides including R2W4R2 and W3R4W3 and their SAPNs (R2W4R2-E12 and W3R4W3-E12) were designed for efficient delivery of MTX into MCF7 breast cancer cells. Based on electron microscopy results, the obtained SAPNs were in nano scale with spherical shape. There was a positive relationship between the free energy of water to octanol transferring and cellular penetration of designed nanostructures. The R2W4R2 possessed proper free energy and ability to form a spherical structure and hydrophobic-hydrophobic interactions, therefore, exhibited more cellular penetration than W3R4W3. The cellular uptake of obtained nanoparticles was examined by flow cytometry and fluorescence microscopy, in which, R2W4R2 and R2W4R2-E12 showed more appropriate penetration into MCF7 cells than W3R4W3 and W3R4W3-E12. The cytotoxicity of MTX-loaded peptides and SAPNs was examined by MTT assay. As a result, at higher concentrations, the R2W4R2 and R2W4R2-E12 showed higher cytotoxic behavior than their counterparts. Despite their enhanced cellular internalization, the cytotoxic behavior of MTX-loaded SAPNs at lower concentrations was relatively less than free MTX, which could be ascribed to the gradual nature of drug detachment from these conjugates. Therefore, R2W4R2 could be considered as an efficient choice to enhance the therapeutic efficiency of MTX in cancer treatments.


Assuntos
Antineoplásicos/administração & dosagem , Peptídeos Penetradores de Células/farmacologia , Portadores de Fármacos/farmacologia , Metotrexato/administração & dosagem , Neoplasias/tratamento farmacológico , Antineoplásicos/toxicidade , Permeabilidade da Membrana Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Metotrexato/toxicidade , Nanopartículas/química , Neoplasias/patologia , Testes de Toxicidade Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...